
in particular, through the action of laser radiation on the gas [9]. 

NOTAT ION 

k, Boltzmann's constant; Tg, gas temperature; mi, hi, Qi, mass of a molecule, density 
of molecules in the condensate, and heat of evaporation of a molecule, respectively, of com- 
ponent i; ngi, density of molecules of component i in the gaseous phase; L, r, length and 
radius, respectively, of the cylindrical channel; Z -- L/r; Dk, Knudsen coefficient of diffu- 
sion of component i; x, dimensionless coordinate. 

, 

2. 
3 ~  

~o 
5. 

6. 
7. 

. 

LITERATURE CITED 

V. E. Minaichev, Cryogenic Vacuum Pumps [in Russian], Energiya, MosGOw (1976). 
Ya. I. Frenkel', The Kinetic Theory of Liquids, Peter Smith. 
K. P. Shumskii, A. I. Myalkin, and I. S. Maksimovskaya, Principles of the Design of 
Vacuum Sublimation Apparatus [in Russian], Mashinostroenie, Moscow (1967). 
M. N. Kogan and N. K. Makashev, Izv. Akad. Nauk SSSR, Mekh. Zhldk. Gaza, No. 6 (1971). 
P. Clausing, Ann. Phys., !__2, 961 (1932). 
A. I. Ivanovskii, Tr~ Tsentr. Aerol. Obs., No. 56 (1964). 
A. V. Luikov, T. L. Perel'man (Perelman), V. V. Levdanskii (Levdansky), V. G. Keitsina, 
and N. V. Pavlyukevich, Int. J. Heat Mass Transfer, 17, No. 9 (1974}. 
V. V. Levdanskii, in: Problems of the Theory of Transfer Processes [in Russian], Inst. 
Teplo- i MassoObmena, Minsk (1977). 
N. V. Karlov and A. M. Prokhorov, Usp. Fiz. Nauk, 123, No. I (1977)~ 

INTERNAL RELAXATION IN PHASE INTERACTION IN A DISPERSED SYST~! 

E. M; Tolmachev .536.70:5'29 ~. 5 

Correct ions have been made to the relaxation times for heat and mass transfer be- 
tween phases in dispersed systems, which incorporate the thermal conduction and 
diffusion within the particles. 

The relaxation formalism in the thermodynamics of irreversible processes has been de- 
veloped most fully by Meixner [I] and leads to expressions of the form 

xo--x- 
z'=x'+ - - ,  (1 )  

I+io~ 

Which allow one to calculate the generalized susceptibility X m for a thermodynamic System in 
relation to the frequency Of variation of the parameters and the values of the susceptibility 
in two limiting states: equilibrium X ~ and frozen'in X ~ together with the relaxation times 
for the corresponding process. 

Recently, the relaxation approximation has been fairly widely used to describe the be- 
havior of dispersed systems subject to external perturbations [2-5]. One then obtains for- 
mally expressions of the type of (i) with the following assumptions: a) the dispersed system 
is a single-phase medium with internal degrees of freedom that describe the exchange between 
phases; b) each of the phases is in internal equilibrium, even if there is no equilibrium 
between the phases; and c) it is assigned in calculating the relaxation time that the thermal 
or diffusion Biot number is negligibly small, and that this is caused not by smallness in the 
heat or mass transfer coefficients but by large values of the thermal conductivity or diffu- 
sion coefficients for the particles. Clearly, assumptions b and c are related. 

In fact, the thermal conduction or thermal diffusion within the particles may be the 
rate-limiting processes, particularly for relatively large particles. In the relaxation 
approximation, this does not alter the general form of (i) but influences the relaxation time 
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%. This effect can be incorporated correctly by considering precisely the propagation of 
heat in a particle.: whose shape is taken as spherical and whose surface temperature varies 
harmonically. The diffusion problem can then be considered by simple replacement of the 
thermal characteristics by diffusion ones, by virtue of the identity of the differential 
equations and boundary conditions. 

We therefore have the following thermal-conduction equation for spherical symmetry: 

00i = a t - -  - - -  r ~ 
ot or 

with the boundary condition 

where 

0t (R, t) = 6T10 exp ( lot) .  

The  s o l u t i o n  t o  (2)  t h a t  s a t i s f i e s  t h e  b o u n d a r y  c o n d i t i o n  i s  

X shx  
01 (r, t) = 6Tlo �9 exp (io~t), 

x shX  

x = r | /  ; X = R  . 
I /  ft i 

The amount of heat absorbed by a particle in unit time is given by the Fourier law 

or on the basis of (4) 

where 

(2) 

(3) 

(4) 

(5) 

q( t )  = -  4~R2~,, 001 ~ (6)  
Or lr=R 

q (t) = 4:zR3M6Tto io  L (X) exp (io~t),. 
a'-? " ~ (7) 

1 L(X) = c t h X - -  - ~ -  ( 8 )  

i s  a L a n g e v i n  f u n c t i o n  [ 6 ] .  

The temperature distribution of (4) describes the temperature wave propagating into a 
particle and decaying in accordance with sinh x/x; we can, as is usual [7], introduce the pene- 
tration depth 8(m) of the temperature wave and assume only that a spherical layer of thick- 
ness 8(m) participates in the heat transfer to the surrounding phase. It is more convenient 
however, to consider the particle as a whole as having a bulk temperature equal to the sur- 
face temperature and incorporate the nonuniform temperature distribution via an effective 
specific heat (plcl) m via the expression 

q ( t ) ~  4 ~tRs(ptC0o001 1 
-5- ,=R 

where (3) has been used. 

Comparison of (7) and (9) gives 

= 4 ~R 3 (pict)(o icoSTio exp (io~t), (9)  
3 

3 L(X).  (pr plc~ ~ (i0~ 

The following are the limiting relations for the effective specific heat: 

(plcl) 0 = lira (plc0 ~ = plc~; (plcl) | = lira (p~cl) ~ ----0. (ii) 

The temperature-relaxation time Tq is found usually from the heat balance equation for a par- 
ticle with Newtonian heat transfer at the surface: 

4 ~R 3 (Ptq) ~ 0Oi ] : - -  4~R 2c~ (0tlr=R - -  0o). ( t 2 )  

We then get the effective temperature-relaxation time as 

T~____ (pict) ~ R =-~t 0 3 L(X),  (13)  
q 3~ q 
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o is the equilibrium temperature-relaxation time from the viewpoint of internal equi- where Tq 
librium. Then the generalized susceptibility for the dispersed medium takes the form 

xo - -  ~| 

X ~ = X" q- I + i~ ~ (14) 

In a case of temperature relaxation, the dispersion term (i + i~T~) -* is written on 
the basis of (13) as 

I 1 
= (15) 

+ ~o~ ~ + ~O~x  L (X) 

We use the expansion of the Langevin function [6] to get for small values of ~ on the basis 
of (5) that 

! l l 
1 + ion~, = l + ion o O-- i,,~O ~" 1 + io, x~ (16)  

where 1 + i~'~ 

�9 ~ = R'/15 a, (17) 

may be called the internal temperature-relaxation time. 

The Langevin function differs littie from unity at high frequencies, so from (13) we have 

I I I 
l + ~.~ = 3% 0 V~ =, + V~ ~, ' (is) 

where 

V ~  (19) ~i = 

Note that(/~) -I is the modified Biot number for a stationary-periodic state [7]. 

Therefore, the dispersion law of (16) differs little from the ordinary law of (I) for 
low frequencies if the thermal conductivity of the particle material is not too low, where- 
as there is a substantial change at high frequencies. 

NOTATION 

X, generalized susceptibility; m, angular frequency; T, relaxation time; t, time; T,o, 
mean surface temperature of a particle; 6T, o, amplitude of surface temperature variation; 8, 
relative temperature; r, radial coordinate; R, particle radius; a, thermal diffusivity; 01, 
particle density; c, specific heat; k, thermal conductivity; q, heat absorbed by a particle 
per unit time; a, heat-transfer coefficient. Superscripts: m, dynamic quantity; O, equilib- 
rium state (m § O); ~, for ~ § ~. Subscripts: O, motion phase; i, particles, q, heat trans- 
fer; %, heat conduction. 
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